The Square Root of a Parabolic Operator

نویسندگان

چکیده

Let $$L(t) = - \mathrm{div} \left( A(x,t) \nabla _x \right) $$ for $$t \in (0, \tau )$$ be a uniformly elliptic operator with boundary conditions on domain $$\Omega of $$\mathbb {R}^d$$ and $$\partial \frac{\partial }{\partial t}$$ . Define the parabolic $${{\mathcal {L}}}= \partial + L$$ $$L^2(0, , L^2(\Omega ))$$ by $$({{\mathcal {L}}}u)(t) := u(t)}{\partial t} L(t)u(t)$$ We assume very little regularity we that coefficients A(x, t) are measurable in x piecewise $$C^\alpha t (uniformly $$x \Omega ) some $$\alpha > \frac{1}{2}$$ prove Kato square root property $$\sqrt{{{\mathcal {L}}}}$$ estimate $$\begin{aligned}&\Vert \sqrt{{{\mathcal {L}}}}\, u \Vert _{L^2(0,\tau ))} \approx _{H^{\frac{1}{2}}(0,\tau ))}\\&\qquad \int _0^\tau u(t) _{L^2(\Omega )}^2\, \frac{dt}{t} ^{1/2}. \end{aligned}$$ also $$L^p$$ -versions this result.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the square root of quadratic matrices

Here we present a new approach to calculating the square root of a quadratic matrix. Actually, the purpose of this article is to show how the Cayley-Hamilton theorem may be used to determine an explicit formula for all the square roots of $2times 2$ matrices.

متن کامل

Heat Kernel Expansion for Operators of the Type of the Square Root of the Laplace Operator

A method is suggested for the calculation of the DeWitt-Seeley-Gilkey (DWSG) coefficients for the operator √ −∇2 + V (x) basing on a generalization of the pseudodifferential operator technique. The lowest DWSG coefficients for the operator √ −∇2 + V (x) are calculated by using the method proposed. It is shown that the method admits a generalization to the case of operators of the type (−∇2 + V ...

متن کامل

Uniform Asymptotic Expansion of the Square-Root Helmholtz Operator and the One-Way Wave Propagator

The Bremmer coupling series solution of the wave equation, in generally inhomogeneous media, requires the introduction of pseudodifferential operators. Such operators appear in the diagonalization process of the acoustic system’s matrix of partial differential operators upon extracting a principal direction of (one-way) propagation. In this paper, in three dimensions, uniform asymptotic expansi...

متن کامل

A square root of the harmonic oscillator

Allowing for the inclusion of the parity operator, it is possible to construct a model of an oscillator whose Hamiltonian admits an exact square root which is rather different from the conventional approach based on creation and annihilation operators. We outline such a model, the method of solution and some generalisations. 03.65.Ge, 03.65.Fd Typeset using REVTEX In memory of Lorella M Jones w...

متن کامل

The Square Root of NOT

Digital computers are built out of circuits that have definite, discrete states: on or off, zero or one, high voltage or low voltage. Engineers go to great lengths to make sure these circuits never settle into some intermediate condition. Quantum-mechanical systems, as it happens, offer a guarantee of discreteness without any engineering effort at all. When you measure the spin orientation of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fourier Analysis and Applications

سال: 2021

ISSN: ['1531-5851', '1069-5869']

DOI: https://doi.org/10.1007/s00041-021-09863-w